
EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 1 of 24

DLL programming in EMTP

DLL programming in EMTP... 1
1 Introduction .. 2
2 Standard path names... 2
3 Interfacing method ... 2

3.1 Network equations .. 3
3.1.1 Main system of equations .. 3
3.1.2 Example ... 4

4 The request and participation setup .. 8
4.1 The sequences of Core requests ... 9
4.2 Data Input Requests ... 9
4.3 Frequency scan requests ... 9
4.4 Steady-state requests ... 9
4.5 Time-domain requests .. 10

5 DLL structure ... 12
5.1 Main structure ... 12
5.2 Building rules .. 13
5.3 DLL function definitions .. 16

5.3.1 Compiling and linking .. 18
5.3.2 Debugging ... 19

5.4 DLL Locations ... 20
6 Example 1 .. 20

6.1 Model .. 20
6.2 Folder contents ... 22
6.3 Debugging .. 22
6.4 Masking for DLL data specification ... 22

7 Example 2 .. 22

Jean Mahseredjian, 5/24/2020 3:33:00 PM

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 2 of 24

1 Introduction
The DLL (Dynamic Link Library) function is designed to allow EMTP users to develop advanced program
model modules and interface them directly and intimately with the EMTP engine. It is for advanced users and
offers advanced capabilities.
Users interested in programming language based model development should use this feature to develop and
maintain models. Such models can be placed in a given location, attached to a device with graphical user
interface features in EMTPWorks and maintained in a library as any other built-in EMTP model.

To build DLLs it is required to use compilers. It is allowed to write EMTP DLLs in almost any language.

It is assumed that the reader is familiar with programming languages and compilers.

The DLLs created by users are not supported by the EMTP support team. The support team will not study DLL
codes to correct user errors.

2 Standard path names
In the following text some path names are installation dependent. Named values are used below to designate
installation dependent path names:

1. ApplicationDir: designates the application folder (path)
a. On a 64 bit Windows system the default value is C:\Program Files (x86)\EMTPWorks.
b. The following script command lines can be run from a JavaScript window or code in

EMTPWorks to determine a given application path:
writeln(getAppDir); //will output the application path in the Script Console window

2. ApplicationDataDir: designates the application data folder (path)
a. On a Windows 10, 64 bit system, the typical default value is:

C:\Users\ThisUser\AppData\Roaming\EMTP\C_Program_Files_x86_EMTPWorks
b. The following script command line can be run from a JavaScript window or code in

EMTPWorks to determine application path:
writeln(getAppDataDir); //will output the application data path in the Script Console window

3 Interfacing method
DLL programming is based on various standards supported by compilers. Such standards allow creating a
function compiled by the user with specific access methods defined by the calling program. In this case the
calling program is EMTP (computational engine, EMTP-engine). The DLL file name normally has the
extensions .dll.
The following rules must be followed:

1. The DLL file must be placed in a valid location to become automatically located by the EMTP-engine.
2. The DLL file name can be any name, the extension .dll is assumed.
3. The EMTP-engine does not need to know in advance the name and the contents of the DLL-file.
4. The EMTP-engine does not need to link with the DLL-file.
5. The DLL-file must simply contain a set of callable methods (functions) recognized in the EMTP-engine.

If a mandatory interfacing function is missing, it will result into an error message and stop the loading
of the DLL-file.

6. EMTP locates the DLL-file, opens it an loads it. There is no mandatory static linking procedure.
7. The DLL-file can be set to be completely independent, but must use some code modules provided in

the EMTP installation folder for specific definitions of objects and data related to EMTP.
8. Any number of user-programmed DLLs can be used in a simulation case and each DLL can be used

more than once.
9. If a user makes an error in the programming of a DLL it may crash the entire application. This is the

negative side of open-architecture codes. In such case it may become necessary to kill the application
manually using the Windows Task Manager. All code modules related to EMTP must be killed:
emtpworks.exe (in some cases) and emptopt.exe.

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 3 of 24

Normally the EMTP-engine calls the DLL directly, but it is preferable and easier to program using a Fortran-95
or Fortran-2003 buffer. There are two recommended approaches from top-down in calling sequence:

1. EMTP-engine
2. DLL code written in Fortran-95 and using only Fortran-95 functions and modules.

In the second approach the DLL code can call any other code written in any language:
1. EMTP-engine
2. DLL code written in Fortran-95 (Fortran layer)
3. Any set of code modules written in any language and called from the Fortran layer above.

It is also possible to skip the Fortran layer.

3.1 Network equations

3.1.1 Main system of equations
Before building DLLs it is important to understand how the DLL can interact with the computational engine of
EMTP. This is achieved by allowing the DLL function to access the main system of equations in the same way
as the developer of EMTP.
The main system of equations in EMTP is given by:

    

=    
    

n c nn

r d bV

Y V iv

V V vi
 (1)

Bold characters are used to denote matrices and vectors. In this system nY is the nodal admittance matrix.

The submatrices cV , rV and dV are used to include non-nodal type equations, such as branch relations.

These are called voltage-defined equations, but can also use current coefficients. The vector of unknown

voltages is named nv and unknown currents are given by Vi . On the right-hand side of equation (1), ni

contains nodal current injections and bv is for determined quantities related to voltage-defined equations.

Equation (1) is similar to writing a general set of equations:

 =A x b (2)

where the vector of unknowns is called x . Another definition used in the EMTP code is given by the notion of
augmented vectors and matrices:

 =aug aug augY V I (3)

In the upper part of equation (1) the submatrices nY and cV are used to state the sum of currents exiting the

circuit nodes and the vector ni is for expressing the sum of currents entering each node.

Through the DLL process the user is given access to the creation of nY and to voltage-defined equations, also

called voltage rows for inserting model equations. Once the model creation equations are understood, the
procedures for sending the equations to the EMTP-engine are sufficiently simple and repetitive to allow users
to build complex models.

The main system of equations (1) is used in both steady-state and time-domain solutions. In the steady-state
solution all quantities are complex, whereas in the time-domain solution only real numbers are used.
A separate system is used for the Load-Flow solution, but this is transparent to the DLLs since the standard
device equations submitted for the steady-state solution are automatically converted in EMTP for the Load-
Flow solution. In this version of the DLL there is no access to the Load-Flow constraint devices (LF devices) as
such.
The complete sequence of solver steps is shown in Figure 1. The Loa-Flow and steady-state steps are
optional. If there is no steady-state solution only manual initialization is available. EMTP is capable of
conducting automatic initialization for all devices when the steady-state solution step is available. Any DLL
device can provide its steady-state equations, as well as initialization procedures.
In addition to the steady-state solution, EMTP is capable of performing frequency scans. This is similar to
performing several steady-state solutions.

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 4 of 24

Multiphase Load-flow

Steady-state

Time-domain

Initialization

Graphical user interface (GUI)

Results

Data

Multiphase Load-flow

Steady-state

Time-domain

Initialization

Graphical user interface (GUI)

Results

Data

Figure 1 Main computation modules (steps) in EMTP

3.1.2 Example
The example presented in this section is used to help to understand of the programming of equation (1) for a
complete circuit. It allows explaining how the various model equations are inserted into the main system of
equations. The procedures are similar to those used in DLLs for specific models or circuits.
The studied example is shown in Figure 2. The node numbering is arbitrary.

3.1.2.1 Steady-state
It is assumed that the independent voltage source and the independent current sources are sinusoidal
functions. The switch D1 is initially open and thus open in the steady-state solution.

+

s1

+

s3

+
L1

+
R1

+
L2

+

C2

+
L3

+

D1
+

C3

+

L4

+

R2

+

C1

+

s2

5 1 2 34

Figure 2 Sample simple network for demonstrating the building of equations

For the steady-state solution, equation (1) of this circuit is given by:

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 5 of 24

     
     
     
     −
     

=     
     
     
     
     

   

11 12 15 1 s2

21 22 24 2 s3

33 3

42 44 4

51 55 5

s1 s1

D1

y y 0 0 y 0 0 V I

y y 0 y 0 0 0 V I

0 0 y 0 0 0 1 V 0

0 y 0 y 0 0 1 V 0

y 0 0 0 y 1 0 V 0

0 0 0 0 1 0 0 I V

0 0 0 0 0 0 1 I 0

 (4)

Since this is a steady-state solution, capital letters are used for the unknown vector elements in x and the

known components in b . All quantities are complex numbers (phasors). The ground node is at zero volt and

does not participate in these equations. The elements of nY at the given frequency (= s j) are found from:

= + +
+

11

1 1
y sC1

sL1 R1 sL2

= − =
+

12 21

1
y y

R1 sL2

= + +
+

22

1 1
y sC2

sL3 R1 sL2

= − =24 42

1
y y

sL3

= +
+

33

1
y sC3

R4 sL4

=44

1
y

sL3

=55

1
y

sL1

= − =51 15

1
y y

sL1

Each passive device is using its own admittance value that is added into the matrix. In the more general case

a user-defined model can have an admittance matrix that must be correctly positioned (added) into nY .

The supplementary equations are added after building nY by correctly accounting for the connectivity of the

devices. The last two lines are voltage defined lines, one for the voltage source and the other one for the ideal
switch. In the case of the ideal voltage source the equation of the source is given by:

 − =5 s1V 0 V (5)

This equation contributes the coefficient 1 at the line 6 and column 5 (6,5) in the left-hand side matrix of

equation (4) and the source voltage phasor s1V to the right-hand side vector. Since the voltage source current

must be accounted for in the nodal equations, it is also needed to add the coefficient 1 at the location (5,6) to
express the current exciting node 5 and entering the voltage source. This is actually the voltage source current

s1I .

The last line in this system is the switch equation. Since the switch is initially open its current is zero, thus:

  =D11 I 0 (6)

The switch is connected between the nodes 4 and 3. Its current D1I is leaving node 4 and entering node 3. On

the left-hand side of equation (4) it is needed to account for the sum of exiting currents at each node, this

contributes -1 to (3,7) and +1 to (4,7). The seventh element is the current D1I coefficient.

The active ideal current sources are contributing to the sum of currents entering nodes 1 and 2 respectively
and appear with positive signs at the positions 1 and 2 in the right-hand side vector.

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 6 of 24

The solution of equation (4) provides all unknown phasors for the given solution frequency. If a given source is
active at a different frequency or not active in the steady-state solution, then it is simply killed by short-
circuiting (ideal voltage source) or by open-circuiting (ideal current source).

This approach is similar to the one used in the time-domain solution, only now, it is needed to discretize
inductances and capacitors using a numerical integration method. This process changes the inductance into
an equivalent model named the companion model or the Norton equivalent model. In EMTP there are currently
two integration methods: trapezoidal and Backward-Euler. The standard trapezoidal method may be changed
into the halved time-step Backward-Euler method to account for discontinuities and eliminate numerical
oscillations (instabilities).

Time-domain
For a given ordinary differential equation:

 =
dx

f(x,t)
dt

 (7)

the trapezoidal integration method with a time-step t is given by:

  − −


= + +t t t t t t

t
x x f f

2
 (8)

For the case of an inductance connected between two arbitrary nodes k and m:

 =km kmdi v

dt L
 (9)

and according to equation (8):

− −

  
= + + = +

t t t t t t tkm km km km km Lh

t t t
i v v i v i

2L 2L 2L
 (10)

which results into the diagram of Figure 3.

2L

t

kmi
Lhi

k mk m
L

kmi

+

+

Figure 3 Numerical discretization of an inductance

In a similar approach for the capacitor:

 =km kmdv i

dt C
 (11)

− −

= − − = +
  t t t t t t tkm km km km km Ch

2C 2C 2C
i v v i v i

t t t
 (12)

Generally speaking the case of the RLC branch can be used as an illustrative example model. For a branch
connected between any two nodes k and m, the time-domain equations of the composite branch are given by:

 = +
t t tkm RLC km RLChi G v i (13)

 =


+ +


RLC

1
G

2L t
R

t 2C

 (14)

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 7 of 24

For history current computation steps at time-point − t t for a network solution at a following time-point t:

− − −

= +
t t t t t tkm RLC km RLChi G v i (15)

− − − − 

= − −
 km t t t 2 t kmt t t 2 t

L km km L

2L 2L
v i i v

t t
 (16)

− −−

  
= − + + −  

  
t km t t t tt t

RLCh RLC L km km

2L t
i G 2v v R i

t 2C
 (17)

To initialize from steady-state conditions at t=0 for the first solution at = t t it is necessary to use:



  
= − + + −  

  
t km 0 00

RLCh RLC L km km

2L t
i G 2v v R i

t 2C
 (18)

 (19)
Variables at t=0 are found from the real part of the cosine phasors used in the steady-state solution. If there
are several steady-state solutions due to the presence of different source frequencies, then superposition is
used and the related quantities must be combined using the real parts of the corresponding Fourier series.

Since EMTP also uses Backward-Euler integration, every model must account for this integration technique
when requested by the solver. The solution of equation (7) when using Backward-Euler is given by:

  −


= +t t t t

t
x x f

2
 (20)

In the RLC branch model the equations for the time-domain solution using halved time-step Backward-Euler
integration at time-point t are identical to (13) and (14), but the history current computation steps at time-point

− t t / 2 for a network solution at a following time-point t are now given by:

  

− − −

= +
t t t

t t t
2 2 2

km RLC km RLChi G v i (21)

 − −−

= −
 km t t tt tt

22

L km km

2L 2L
v i i

t t
 (22)

  − −−

 
  = − + + 

  
 

t km t tt t tt
2 22

RLCh RLC L km km

2L
i G v v R i

t
 (23)

To initialize from steady-state conditions at t=0 for the first solution at = t t / 2 it is necessary to use:



  
= − + +  

  
t km 0 00

2

RLCh RLC L km km

2L
i G v v R i

t
 (24)

When switching from trapezoidal to Backward-Euler it is necessary to compute Lv using the trapezoidal

equation (16) at the switching time-point. Accordingly when switching from Backward-Euler to trapezoidal,
equation (22) must be used first.

If all inductances and capacitors in Figure 2 are replaced by their Norton equivalents then the time-domain
system of equations can be formulated as:

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 8 of 24

+ − −
   
    − − +
   

− −   −
   

=   
   

−   
   
   −   

h h h

h h h

h h

h

h

s2 L1 C1 R1 L2
11 12 15 1

s3 L3 C2 R1 L2
21 22 24 2

C3 R2 L433 3

42 44 4 L3

51 55 5
L1

s1
s1

D1

i i i i
y y 0 0 y 0 0 v

i i i iy y 0 y 0 0 0 v

i i0 0 y 0 0 0 1 v

0 y 0 y 0 0 1 v i

y 0 0 0 y 1 0 v i
0 0 0 0 1 0 0 i

v
0 0 1 1 0 0 0 i

0


 
 
 
 
 
 
 
 
 
 
 

 (25)

Now the history current sources (subscript h) are appearing in vector b and contributing to current injections in

related nodes. Since history is available from the previous time-point solution, this equation is solved to find all
unknown voltages and currents, all history terms are recalculated, the time-step is advanced and a new
solution is found. The calculation of the admittance elements is the same as before, only now only real

numbers are used. In the case of 11y , for example:



= + +


+


11

t 1 2C1
y

2L22L1 t
R1

t

 (26)

In equation (25) the ideal switch is now set to the closed position which gives the equation:

 − =4 3v v 0 (27)

The contributed coefficients are -1 at the location (7,3) and +1 at the location (7,4).

4 The request and participation setup
The EMTP computational engine is based on a request-participation setup where the Core Code is
exchanging with device models. This concept is illustrated Figure 4. The DLL devices are viewed as any other
device models except that their code is completely detached and loaded only on DLL usage.

The Core Code executes a certain number of steps for building and solving the main system of equations. At
each step it sends a request to each device model for its participation into the solution process. The device
codes are encapsulated in modules and exchange with the Core Code through specific methods. The
participation is not mandatory. Some devices may not participate into some requests and still provide the
correct solution.

Data

Core Code

Organizer

Solver

Device models
data, methods

Scopes, external interaction

request

participation

Figure 4 The request-participation design of EMTP

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 9 of 24

4.1 The sequences of Core requests
The Core requests follow a given sequence for all computation modules. This sequence is important since
model calculations must be prepared and submitted in a given order. Some requests are not needed in the
DLL type devices.
Each Core request has a code number transmitted by a variable.

In the following lines the matrix augY will be designated as Yaug, nY as Yn, the vector augV as Vaug and the

vector augI as Iaug. It is recalled that augY is actually the A matrix, augV is the vector of unknowns x and

augI is the vector of known variables b . The same definitions are applicable to both steady-state and time-

domain solutions.

4.2 Data Input Requests
The following list presets the sequence of requests during the data input procedures in the Core Code. All
request signals are preceded by the keyword “req”.
1 Read Load-Flow solution if available.
2 Initialize all matrices.
3 req_initialize_new: all devices must read data and perform initialization procedures.
4 req_setup_controllables: only if at least one controllable.
5 req_setup_observables: only if at least one observable.

4.3 Frequency scan requests
The system of equations is based on complex numbers. The following sequence of calls must be followed.
1 req_put_nodes_in_Yaug: Symbolic allocation of Yaug.
2 Initialize: Iaug=0
3 req_put_in_Yaug_ss: Initialize the voltage-defined sections of Yaug.
4 Select solution frequency

4.a Initialize: Yn=0
4.b req_put_in_Yn_ss_freqscan: Send elements into Yn at the given frequency.
4.c req_put_in_Iaug_freqscan: Send elements into Iaug at the given frequency.
4.d Save: at this stage the Core Code will dump results into the binary plot file.
4.e Initialize: Iaug=0

5 Go back to 4 or end if all frequencies are completed.
6 End

4.4 Steady-state requests
If the user does not request a steady-state solution or there are no active sources in the steady-state solution,
then the request is:
req_zero_initial_conditions

If the steady-state is requested and can be calculated then the sequence of requests becomes:
1 Read Load-Flow solution if available.
2 Initialize all matrices.
3 req_insert_source_w_for_ss: Used to determine for which frequencies it is needed to perform the steady-

state solutions.
4 req_put_nodes_in_Yaug: Symbolic allocation of Yaug.
5 Initialize: Iaug=0
6 req_put_in_Yaug_ss: Initialize the voltage-defined sections of Yaug.
7 Select solution frequency

7.a req_put_in_Yn_ss: Send elements into Yn at the given frequency.
7.b req_put_in_Iaug_ss: Send elements into Iaug at the given frequency.
7.c req_superpose_ss_at_w: Used in devices to prepare history terms from each frequency.
7.d req_print_ss: Print the steady-state web for all devices.

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 10 of 24

7.e Initialize: Iaug=0
8 Go back to 7 or end if all frequencies are completed.

4.5 Time-domain requests
The steady-state solution is optional and can precede the time-domain solution for automatic initialization of all
devices. If there is no steady-state solution then only zero initial conditions are used.
The integration techniques are:

1. TRAP_EBA: when the selection is Trapezoidal and Backward-Euler
2. EBA: when the selection is Backward-Euler
3. TRAP: when the selection is Trapezoidal

The integration time-step is t . The first time-point solution is for = t t when TRAP and = t t / 2 when

TRAP_EBA. At =t 0 the solution is found from the steady-state solution. If there is no steady-state then all

variables are initialized to 0.

In the following list Core Code procedures are presented together with various requests to allow understanding
procedure sequencing.

1. Initialize all matrices.
2. req_put_nodes_in_Yaug: optional, if not done in the steady-state solution
3. req_index_controllables: sends the index numbers of controlled signals, these indexes allow retrieving

back control signal values during the time-domain simulation
4. t=0 (simulation time)
5. Initialize: Iaug=0
6. req_load_observables_t0: return all observable signals at t=0 for the next solution of Control System
7. Solve Control System equations at t=0
8. Set SolMet.OnTimeMesh for the first time-point solution. It is 0 when SolMet.TRAP_EBA is 1.
9. req_insert_times: allows transmitting to the core, start and stop times from devices, when known
10. Save scopes at t=0
11. Model history initialization

a. req_EBA_init_at_t0: when TRAP_EBA or EBA alone, initialization procedures for the integration
methods

b. req_init_at_t0: when TRAP only, initialization procedures for the integration method
12. req_put_in_Yaug: devices send equations into Yaug, voltage-defined section, augmented section
13. req_put_in_Yn: devices send individual admittance matrices into Yn
14. If nonlinear devices exist

a. Initialize Ynonlin (nonlinear nodes)
b. req_put_nodes_in_Ynonlin: identification of nonlinear device nodes
c. Initialize: Inonlin=0 (the current vector holding contributions from nonlinear elements)
d. req_iter0: perform first iteration in nonlinear deices. This is an initialization procedure that may

help the convergence procedure. The iteration is based only on the steady-state solution.
15. SimData.rebuild_for_sw=.TRUE.
16. SimData.rebuild_for_nonl=.TRUE.
17. SimData.rebuild_for_equation=.FALSE.
18. Advance to next time-point, time-domain loop: use full or halved time-step (if TRAP or EBA step).

a. Exit time-domain loop if SimData.tmax is exceeded
b. req_put_in_Iaug: transmission of device contributions into Iaug
c. Start switch loop for simultaneous switching option (1 to SolMet.max_switch_loop, at least 1):

i. If SimData.rebuild_for_sw or SimData.rebuild_for_equation is true
1. req_update_topology
2. SimData.rebuild_for_nonl=.TRUE.
3. The matrix Yaug must be refactored

ii. If there are no nonlinear devices:
1. Solve: Yaug Vaug = Iaug (A x = b)

iii. If there are nonlinear devices, start iterative loop for nonlinear devices:
1. Start iterative loop (1 to SolMet.MaxNumberIter)

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 11 of 24

2. Iaugup=Iaug+Inonlin
3. If SimData.rebuild_for_nonl is true, refactor Yaug.
4. Solve Yaug Vaug = Iaugup
5. Exit iterative loop on Vaug convergence
6. Reset Yaug back to its original version without nonlinear branches, using Ynonlin
7. Reset: Inonlin=0
8. req_iter
9. Check convergence for all nonlinear devices and exit iterative loop if converged,

or exit if the maximum number of iterations is exceeded
10. Go back, iterative loop
11. Reset: Inonlin=0
12. req_convergence_message: Send convergence error if the maximum number of

iterations was exceeded
iv. req_load_observables: return all observable signals at the given time-point for the next

solution of Control System
v. If first switch loop or SolMet.resolve_controls: Solve Control System equations
vi. If not Simultaneous switching procedure (SolMet.no_simultaneous_switch is true), exit this

switch loop
vii. If Simultaneous switching procedure (SolMet.no_simultaneous_switch is false)

1. SimData.rebuild_for_sw is set to false
2. SimData.rebuild_for_equation is set to false
3. SimData.resolve_for_device is set to false
4. req_update_status_at_t: update device status, used for switches or nonlinear

devices for updating operational segment positions
5. If SimData.rebuild_for_sw is false and SimData.resolve_for_device is false, exit

switch loop
d. Go back, switch loop
e. Save plot data
f. If there was No Simultaneous switching procedure (SolMet.no_simultaneous_switch is true)

i. SimData.rebuild_for_sw and SimDat.rebuild_for_equation are set to false.
ii. req_update_status_at_t: update device status, used for switches or nonlinear devices for

updating operational segment positions
19. Perform the following steps depending on the solution stage (numerical integration method) for the next

solution time-point. Preparing for the next time-point solution.
a. When SolMet.TRAP_EBA is 1:

i. If SimData.rebuild_for_sw is 1, set SolMet.discon_found to 1. Other models can set
SolMet.discon_found independently.

ii. Check for possible source discontinuities
iii. Determine if the next solution is on the time-mesh: set SolMet.OnTimeMesh
iv. Perform one of the following according to solution stage:

1. req_TRAPtoEBA_update_at_t: computation of history terms when moving from
TRAP to EBA.

2. req_EBAtoTRAP_update_at_t: computation of history terms when moving from
EBA to TRAP.

3. req_EBA_update_at_t: computation of history terms when EBA
4. req_update_at_t: computation of history terms when TRAP

b. When SolMet.EBA is 1: req_EBA_update_at_t
c. When SolMet.TRAP_EBA is 0 (SolMet.TRAP is 1): req_update_at_t

20. Reset: Iaug=0
21. Go back, time-domain simulation loop

When a statistical simulation is selected, devices must dump and reload memory between statistical shots.
This is achieved through the requests:
req_save_me: save data into a binary file according to calling sequence
req_load_me: reload data from binary file according to calling sequence

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 12 of 24

More information on the various objects simulation control objects (SolMet, SimData…) can be found in the fil
mysimulation_data.f90 (folder: ApplicationDir\EMTP\DLL_build\EMTP_Release).

5 DLL structure

5.1 Main structure
A DLL can contain any code, but it must provide specific exported code sections to accommodate requests
sent by the Core Code.
Generally speaking the DLL must contain its memory section, various internal functions and exported functions
matching the requests:
1 Common memory section
22. Common services
23. Used external (provided) services or objects
24. Internal function definitions
25. Exported function definitions
Normally the Exported functions must reside in the DLL file declared in EMTPWorks. All other functions can
reside in various files and even use other DLLs, but there is only one DLL code file identified in EMTPWorks. If
the model DLL is using other DLLs then it must locate them through its own code.

In addition to the standard requests explained above, the DLL receives the following additional requests:
req_post_initialize_new: allows the DLL to perform extra initialization actions not feasible in
req_data_pointers: transmission of data pointers into the main program
req_end: during this request each DLL can perform termination procedures, such as file closing, nullification of
pointers and termination of other external procedures.

If Fotran-95 or Fortran-2003 is used to create the DLL, then a typical DLL file will have the following
appearance:

MODULE FDLL_DATA
Usage of external modules
DLL memory, services
END MODULE

SUBROUTINE DLL_INITIALIZE_NEW(..)
……
END SUBROUTINE

SUBROUTINE …
……
END SUBROUTINE

The subroutines that must reply to request procedures are callable from the Core Code. It means that they
must be exported using a compiler specific keyword. In the case of the Intel Visual Fortran Compiler, the
keyword is:

 !DEC$ ATTRIBUTES DLLEXPORT:: DLL_INITIALIZE_NEW

In this case the subroutine DLL_INITIALIZE_NEW is made callable from the Core Code. The Core Code will
locate the callable subroutines automatically and call them using their address. Some requests are mandatory
and if the related function or subroutine is not available in the DLL file, it will result into an error message.

The function name related to a request name is simply the replacement of the characters “req” by “DLL”.
A set of modules used in EMTP (Core Code) that are usable also in a DLL model file are available in the folder
“ApplicationDir\EMTP\DLL_build”. These are Fotran-95 modules.

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 13 of 24

5.2 Building rules
The example of Figure 5 will be used here to illustrate the rules for building a DLL. The following steps must be
followed first:

1. Create the DLL symbol using the Symbol Editor or start from an existing device and modify.
a. To create from scratch use “File>Design Symbol” and save the part into a library. The Symbol

Editor view for the device of Figure 5 is shown in Figure 6. The symbol is used for visualization
only since it is meaningless for EMTP. In this example it is used to show the various devices
modeled in the DLL for this particular example.

b. Use the Symbol Editor to attach pins to the device according to the DLL device contents (see
“Fixing pins” item below).

c. All attributes must be set to default values shown in Table 1 using the right-click menu
Attribute.

d. The LibType attribute will be based on the name used for saving into the library. It can be
empty when placed into the design. This is more useful for updating from library procedures.

e. The Type name can be modified using “Options>Part Type>Make Unique Type”. The Type
name is not necessary the Part name. It can be any valid name. In the example of Figure 5 it
is named testDLL.

f. The Part name (Part attribute) must be set to DLL. This is a unique identifier.
i. It is also allowed to use other part names starting with the letters DLL, example

DLLyyy. This offers the advantage that all such DLLs will be grouped and called
sequentially from EMTP. The DLL developer can benefit from this flexibility to easily
maintain relations and data exchanges between DLLs of the same type and/or to
create grouped methods.

g. The DLL is given a unique name attribute, in this example it is named MYDLL.
2. Fixing pins:

a. The pins attached to the DLL device are given an ordinal (pin number). This is shown in the
example of Figure 6: pins are numbered according to the order of appearance from top down.

b. To check Pin Ordinals after completing the Symbol Editor session: right-click on the pin and
select “Pin Info”.

c. The pin numbers are important since they allow the DLL developer to establish connections
with the contents of the DLL. The symbol is meaningless to EMTP computations, only the pin
interface and data attributes count.

d. Only 1-phase pins are supported for the DLL devices. To enforce the “General Signal” Line
Type on each pin, the DLL developer must set the pin Phase to: =1. The pin attributes can be
set through the pin right-click menu Attributes or in the Symbol Editor. This is to avoid DLL
users from changing any pin signal to 3-phase and thus causing corruption. It is however
possible to connect to an existing 3-phase signal by using 3 pins on the DLL symbol and
connecting each pin individually to its target phase.

e. Once the pin ordinals are fixed, the pin names are used only for visualization/documentation.
In the example of Figure 5 the power pins are given the names p1 to p8 and the control pins
are given the names o1 to o2 for output signals (observables) and i1 to i2 for inputs pins
(controllables).
The power pins are numbered first (from 1 to 7 in the example of Figure 5 for p1 to p8),
followed by control input pins (from 8 to 9 in the example of Figure 5 for i1 to i2) and finally
control output-observable pins (from 10 to 12 in the example of Figure 5 for o1 to o2).

f. The power pins are set explicitly to the “Pin Function” Power in the Symbol Editor and the
control pins are set to Input or Output.

3. ParamsA attribute: This attribute is used to provide specific information to EMTP on the DLL
interfacing with the rest of the network. It is a comma separated string with the following data entered
either manually or using a user-programmed mask:
1. Npower_signals: number of power (not control) signals, 8 in this example
2. Nvoltage_type: number of devices that will contribute to the voltage-defined section of Yaug, 3 in

this example (2 independent voltage sources and 1 switch)
3. Ncurrent_sources: number of independent current sources, 1 in this case

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 14 of 24

4. Nnonlinear_nodes: number of nonlinear nodes, it means number of nodes connected to nonlinear
devices. There are 2 such nodes in this case.

5. Ncontrol_signals: total number of control signals (input only), 2 in this case (for pins i1 and i2)
6. Nobserve_signals: total number of observable (control ouput) signals, 2 in this case (for pins o1

and o2)
7. Relative_path_flag:

a. Use 0 to indicate direct access, the DLL file is specified with its full path name.
b. Use 1 to indicate relative path usage for the specified DLL file. Using 1 forces EMTP to

search the design folder.
c. Use 2 to indicate that the specified DLL file must be searched in the location specified by

the “DLL Options” device.
d. Use 3 to indicate that the specified DLL file must be searched in the Toolbox folder in

ApplicationDir.
This Toolbox folder contains the file Toolbox.ini which specifies searched DLL folders for
Toolboxes. Example:

[DLLs]
MMC\DLL

e. The user may add supplementary search paths by modifying the Windows PATH
environment variable.

4. ModelData attribute:

a. The first line of ModelData is used to identify the DLL file. The “dll” extension is assumed. Full
path must be used when Relative_path_flag is 0 and relative (partial) path when 1.

b. The following lines are free. These lines can be used to transmit data defined on the screen to
the actual DLL. EMTP simply reads these lines and sends them directly to the DLL code
through the request req_initialize_new.

DLL ParamsA attribute data

DLL ModelData attribute data

+

+

+p1 p2

p3 p4

p5 p6

p7

p
8

i1

i2

o
1

o
2

MYDLL

ParamsA=8,3,1,2,2,2,1,

ModelData=fdll,
10 0 1e-06 1 1
3e-03

Figure 5 User-defined DLL example, testDLL

It is noticed that the parameters set in ParamsA are related only to equations inserted into equation (1). The
device may have many other equations, but must provide only a given set for interfacing with EMTP. This
means, for example, that a device may have many current sources, but none of them may be connected
directly through a pin, in which case there will be no declared current sources (Ncurrent_sources=0).

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 15 of 24

Table 1 Default Attributes

Attribute Value Example

Exclude

ExportedMask

FormData

FormData1

LibType any name, same as Type

Mask.Dev

Mask.Dev.Script

ModelData fdll,
10 0 1e-06 1 1
3e-03

ModelData1

ModelDataError

MPLevel

Name any name MYDLL

Name.Prefix any prefix

ParamsA 8,3,1,2,2,2,1,

ParamsB

ParamsC

Part DLL DLL

Part.List

Script.Info.Dev

Script.Mask.Dev

Script.Open.Dev

Sniffer

Status.Script

Value

Value1

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 16 of 24

Figure 6 Symbol editor for testDLL

5.3 DLL function definitions
For each request transmitted to the DLL, the expected request is based on a function definition. The following
is the list of available function definitions:
1 DLL_INITIALIZE_NEW(myname,idev,Data_Section,DLL_NAME)

1.a mandatory function
1.b myname: device name in EMTPWorks, string
1.c idev: device number in the list of all DLL devices, integer
1.d Data_Section: Array of strings, contents of ModelData after the DLL file identification
1.e DLL_NAME: the name of this DLL file name with full path

2 DLL_POST_INITIALIZE_NEW(myname,idev,power_signal_nodes,n_nodes)
2.a mandatory function, called after DLL_INITIALIZE_NEW
2.b myname: device name in EMTPWorks, string
2.c idev: device number in the list of all DLL devices, integer
2.d power_signal_nodes: array of index numbers for all power signal nodes of the DLL device
2.e n_nodes: size of the array above

3 DLL_DATA_POINTERS(idev,Pointer_simulation_data)
3.a optional function, always called first, before DLL_POST_INITIALIZE_NEW.
3.b idev: device number in the list of all DLL devices, integer
3.c Pointer_simulation_data: Pointers to the Simulation Data objects

4 DLL_INSERT_SOURCE_W_FOR_SS(idev)
4.a optional
4.b idev: device number in the list of all DLL devices, integer

5 DLL_PUT_VOLTAGE_ROW_EQUATIONS(idev,first_voltage_row)
5.a optional, called for req_put_nodes_in_Yaug request
5.b idev: device number in the list of all DLL devices, integer

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 17 of 24

5.c first_voltage_row: index of the first row in the list of voltage-defined equations
6 DLL_PUT_IN_YAUG_SS(idev)

6.a optional
6.b idev: device number in the list of all DLL devices, integer

7 DLL_PUT_IN_YN_SS(idev,w)
7.a optional
7.b idev: device number in the list of all DLL devices, integer
7.c w: the computation frequency in rad/s, double precision real number

8 DLL_PUT_IN_IAUG_SS(idev,w)
8.a optional
8.b idev: device number in the list of all DLL devices, integer
8.c w: the computation frequency in rad/s, double precision real number

9 DLL_PUT_IN_IAUG_FREQSCAN(idev,w)
9.a optional
9.b idev: device number in the list of all DLL devices, integer
9.c w: the computation frequency in rad/s, double precision real number

10 DLL_PUT_IN_YN_SS_FREQSCAN(idev,w)
10.a optional
10.b idev: device number in the list of all DLL devices, integer
10.c w: the computation frequency in rad/s, double precision real number

11 DLL_SUPERPOSE_SS_AT_W(idev,w)
11.a optional
11.b idev: device number in the list of all DLL devices, integer
11.c w: the computation frequency in rad/s, double precision real number

12 DLL_PRINT_SS(myname,idev,w,Current,Spower)
12.a optional
12.b Errors in this function may cause printed power mismatch
12.c myname: device name in EMTPWorks, string
12.d idev: device number in the list of all DLL devices, integer
12.e w: the computation frequency in rad/s, double precision real number
12.f Current: returned double precision complex vector of currents entering each pin of the DLL
12.g Spower: returned double precision complex vector of S powers entering each pin of the DLL

13 DLL_INDEX_CONTROLLABLES (idev,control_valindex)
13.a Only when controlled input signals exist
13.b idev: device number in the list of all DLL devices, integer
13.c control_valindex: integer array, indexes of controlled (input) signals

14 DLL_LOAD_OBSERVABLES_T0(idev,Returned_obs_array)
14.a only when observable signals exist (control output signals)
14.b idev: device number in the list of all DLL devices, integer
14.c Returned_obs_array: double precision real array of values sent as observables

15 DLL_ZERO_INITIAL_CONDITIONS(idev)
15.a optional
15.b idev: device number in the list of all DLL devices, integer

16 DLL_INIT_AT_T0(idev)
16.a optional
16.b idev: device number in the list of all DLL devices, integer

17 DLL_EBA_INIT_AT_T0(idev)
17.a optional
17.b idev: device number in the list of all DLL devices, integer

18 DLL_PUT_IN_YAUG(idev)
18.a optional
18.b idev: device number in the list of all DLL devices, integer

19 DLL_PUT_IN_YN(idev)
19.a optional
19.b idev: device number in the list of all DLL devices, integer

20 DLL_PUT_NODES_IN_YNONLIN(idev)

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 18 of 24

20.a optional
20.b idev: device number in the list of all DLL devices, integer

21 DLL_ITER0(idev)
21.a optional
21.b idev: device number in the list of all DLL devices, integer

22 DLL_PUT_IN_IAUG(idev)
22.a mandatory
22.b idev: device number in the list of all DLL devices, integer

23 DLL_UPDATE_TOPOLOGY(idev)
23.a optional
23.b idev: device number in the list of all DLL devices, integer

24 DLL_ITER(idev,convergence_flag)
24.a optional
24.b idev: device number in the list of all DLL devices, integer
24.c convergence_flag: return true when converged, return false when did not converge

25 DLL_CONVERGENCE_MESSAGE(idev)
25.a optional
25.b idev: device number in the list of all DLL devices, integer
25.c Allows sending a convergence problem message to the EMTPWorks progress panel

26 DLL_LOAD_OBSERVABLES(idev,Returned_obs_array)
26.a only when observable signals exist (control output signals)
26.b idev: device number in the list of all DLL devices, integer
26.c Returned_obs_array: double precision real array of values sent as observables

27 DLL_UPDATE_STATUS_AT_T(idev)
27.a optional
27.b idev: device number in the list of all DLL devices, integer

28 DLL_UPDATE_AT_T(idev)
28.a optional
28.b idev: device number in the list of all DLL devices, integer

29 DLL_UPDATE_AT_T(idev)
29.a optional
29.b idev: device number in the list of all DLL devices, integer

30 DLL_TRAPTOEBA_UPDATE_AT_T(idev)
30.a optional
30.b idev: device number in the list of all DLL devices, integer

31 DLL_EBA_UPDATE_AT_T(idev)
31.a optional
31.b idev: device number in the list of all DLL devices, integer

32 DLL_EBATOTRAP_UPDATE_AT_T(idev)
32.a optional
32.b idev: device number in the list of all DLL devices, integer

33 DLL_SAVE_ME(idev)
33.a optional
33.b idev: device number in the list of all DLL devices, integer

34 DLL_LOAD_ME(idev)
34.a optional
34.b idev: device number in the list of all DLL devices, integer

35 DLL_END(idev)
35.a optional
35.b idev: device number in the list of all DLL devices, integer

5.3.1 Compiling and linking
Normally the DLL can be created with any compiler. There could be however some incompatibility issues
when dealing with libraries and other DLL export related problems. It is also allowed to use any programming

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 19 of 24

language if the DLL programmer knows how to interface with calls from the Fortran-95 (Fortran-2003) code
used in EMTP.
The compiler used in the creation of the provided examples and guaranteed to work with the current EMTP
version is "Intel Visual Fortran Compiler" with "Microsoft Visual Studio".

Two basic examples are provided and can be studied for learning how to program EMTP DLLs. The examples
are available in the EMTPWorks Examples folder named DLL. The Examples folder can be located using the
EMTPWorks menu Examples>Folder.

Standard compiling and linking procedures are used.

If the DLL is set to respond to the request DLL_DATA_POINTERS, then it is needed to use an include
statement for appropriate subroutine declaration in the DLL:
INCLUDE 'EMTP_Release/dll_data_pointers.f90'
In addition it is needed to include in the list of project files the file:
mysimulation_data.f90
It contains the source code of the module: simulation_data. The request DLL_DATA_POINTERS is needed in
almost all DLL design cases.

The Fortran-95 files available in EMTP_Release are:

1. default_precision.f90: contains default precision selections used in EMTP-engine. Defines
parameters such as krealhp for double-precision or maximum precision real numbers. It can be
optionally used (USE statement) in the DLL for setting the definitions.

2. dll_data_pointers.f90: must be used when the DLL is set to respond to the request
DLL_DATA_POINTERS. It is used through the INCLUDE statement presented above. It establishes
pointers into the memory of simulation_data module.

3. mysimulation_data.f90: contains the DLL version of the simulation_data module. It must be used to
exchange simulation data with the EMTP-engine. In addition to data, this module provides various
service methods (functions). An underscore is used to distinguish such methods. Documentation is
available in the presented examples.

4. sizelimits.f90: Although EMTP is using full-dynamic memory, it is needed to establish some practical
limits in simple arrays used for various data maintenance operations. This module provides the
available limits in the EMTP-engine and can be used in the DLL for specifying memory limits of
common data.

5. variable.f90: Allows to define various useful variables such as pi or twopi for the DLL usage. This
module is for convenience only and the DLL may use its own definitions.

All of the above modules are read-only and should not be modified by the DLL developer.

5.3.2 Debugging
Standard DLL debugging procedures are acceptable. The following rules must be followed to debug a DLL:

1. The device using the DLL must select the debug version of the DLL.
2. It is necessary to indicate to the compiler the location of the executable file and to provide the

appropriate program arguments. This is achieved through a compiler menu. In the case of "Intel Visual
Fortran Compiler" with "Microsoft Visual Studio" (see Figure 7):

a. Command: is set to ApplicationDir\EMTP\emtpopt.exe
b. Command Arguments:
ApplicationDataDir\emtpstate.ini;;design_Netlist_file_name;1;

Four semicolon ";" separated arguments must be specified in the Command Arguments field:
1. The first argument specifies the location of an initialization file for DLL search path settings. This is

installation dependent (see ApplicationDir in the above Section 2). In this example:
C:\Users\p462909\AppData\Roaming\EMTP\emtpstate.ini

2. The second argument is not used in this version.

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 20 of 24

3. The third optional argument specifies the design Netlist file name. The Netlist file can be generated
using the command (menu) "EMTP>Generate EMTP Netlist". In this example:
C:\Users\p462909\Documents\EMTP\DLL\controlled_source\test_ICONV.net

4. The fourth argument indicates that the EMTPWorks Progress Panel must be activated.
An optional argument can be simply omitted by terminating it with a semicolon ";", for example:
C:\Users\p462909\AppData\Roaming\EMTP\emtpstate.ini;;;1;
In this case the Netlist file name is not used. If the Netlist file is not used, then EMTPWorks will open a File
Selection panel when the debugging process is started.
It is not possible to debug with the internal code of “emtpopt.exe”, but only with the code accessible in the DLL.

Figure 7 Setup of Command and Command Arguments for DLL debugging

5.4 DLL Locations
The DLL search locations are specified by a parameter in the ParamsA attribute (see Section 5.2).

6 Example 1
This example can be found in the EMTPWorks Example folder DLL/controlled_source (see the menu
Examples>Folder).

6.1 Model
The DLL device modeled in this example is shown in Figure 8. It has only 4 power pins. The pin ordinals are
shown on the device. It is a voltage controlled current source. From the pin numbers:

 ()34 1 2I g V V= − (28)

This is a voltage-defined function given by:

 34 1 2I gV gV 0− + = (29)

with g being the gain. The insertion of this equation in equation (1) is given by:

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 21 of 24

 
 
 
     

=     
    
 −
 

−  

n n n

34

1

I 0

1

g g 1

Y v i
 (30)

The nodes 1, 2, 3 and 4 of the device are mapped into the actual network node numbers k, m, i and j
respectively and result into:

 k m ijgV gV I 0− + + = (31)

The last row in equation (30) is entering the non-zero coefficients of this equation. The last column is used to

maintain the correct sum of currents exiting the nodes i and j. A non-symmetric augY matrix is created by this

example.

+1
2

3

4
IcontrolV

Figure 8 DLL example: Voltage controlled current source

The ParamsA attribute is given by:
4,1,0,0,0,0,1,
There are 4 power signals, 1 voltage type equation, 0 current sources, 0 nonlinear nodes, 0 control signals, 0
observable signals and Relative_path_flag is set to 1.
The ModelData contains the following lines:

release/icontrolv,
3

It indicates that the DLL file is named “icontrolv” (icontrolv.dll) and is located in the folder “release” which is in
the same folder as the design file “test_iconv.ecf” shown in Figure 9.
The gain g is entered on the last data line. It is 3 in this example. This line is transmitted directly to the DLL
code for internal decoding.

+

1?
v

R

+

IcontrolV

ModelData=release/icontrolv,
3

+

AC1

1 /_0

+
L1

1mH

+
R1

?v

10

+

R2

1

Figure 9 Test case test_iconv.ecf

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 22 of 24

6.2 Folder contents
The folder contents for this example are:
1 Debug: folder related to the compiler output for the debug version of icontrolv.dll, automatically created
2 EMTP_Release: this is a copy of the folder

“ApplicationDir\EMTP\DLL_build\EMTP_Release”. The DLL developer must always use the latest version
of EMTP_Release.

3 Release: folder related to the compiler output for the release version of icontrolv.dll, automatically created
4 test_ICONV_pj: project folder for test_iconv.ecf, automatically created
5 fdll.sln: project file used by Microsoft Visual Studio (Intel Visual Fortran Compiler)
6 IcontrolV.f90: The Fortran-95 source code file used for building icontrolv.dll
7 test_iconv.ecf: the design file
8 test_iconv.net: the Netlist file, automatically generated when running a simulation or using the menu

"EMTP>Generate EMTP Netlist".

This folder contains the complete example, but the only two files are actually needed to run the simulation:
test_iconv.ecf and the referenced DLL file icontrolv.dll. These files can be copied and used elsewhere as long
as the reference to icontrolv.dll in test_iconv.ecf is correctly established.

6.3 Debugging
To debug this DLL it is necessary to provide the Command and Command Arguments fields shown in Figure
7. It is also necessary to specify the debug version of the DLL (Debug/icontrolv) in the design file and generate
its Netlist accordingly.

6.4 Masking for DLL data specification
In this example, the DLL based device is using a scripted mask for specifying the DLL file name and
parameter. The following steps are used for adding a mask to IcontrolV:

1. Right-click on the device IcontrolV and select the Attributes menu
2. Select the Script.Open.Dev attribute and change it to script_black_box.dwj
3. Click on Done
4. Double-click on the device and add the following code lines in the mask

a. Initial values section:
DLLname='release/icontrolv,'
gain=3

b. Rules section:
DLLname_ = DLLname;
gain_ = 3

c. Variables to transmit section
DLLname_,gain_

It is recalled that in a script_black_box mask, if a variable is terminated with the underscore character “_” then
its contents are transmitted directly into the ModelData attribute as a string without adding variable's name.

7 Example 2
This example can be found in the EMTPWorks Example folder DLL/fdll (see the menu Examples>Folder).

This example is more complex since it uses almost the entire range of options and data exchange features
available in a DLL.
The DLL device is the one shown in Figure 5. The DLL file is fdll.dll. The test case is named dll1.ecf (see
Figure 10). Notes:

1. This dummy test case setup is for demonstrating various DLL features.
2. The test case is self-explanatory and based on the source code file fdll.f90.

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 23 of 24

3. To demonstrate that a single DLL can be used to develop different types of models, two versions (“a”
and “b”) of the DLL are used. RLCDLL_2 is the simple version “a” and MYDLL is the more complicated
version “b”.

4. The complicated version has voltage and current sources, a nonlinear function and connects to control
signals.

5. The definitions of ParamsA and ModelData are available in the module definition section in the file
fdll.f90.

6. Some model data is defined directly in fdll.f90. This is the case of the nonlinear device function.

Sending signals into controls

DLL demonstration example

DLL ParamsA attribute data

DLL ModelData attribute data

Validation for the RLC section of the DLL

+

AC1

?vip

1000 /_0

+
L_1

?vip

1mH

+
L1

?vip

1mH

Statistical

Not used

MPLOT

+
1ms|1E15|0

?v

Gaussian

DummyTest

+

C1s2

?vi

100uF

+

R1s1

?vi

20

DLL_Vsource1_current

?s

-1

Node7_voltage

?s

1

c

C2

20

c

Control_DLL_Vsource1_mag

10

sg1

?s

step

++

-

Control_DLL_Vsource2_mag

?s

+
R2s1 ?v

70

+
R1s2 ?v

50

+ VM

?v

Node7

+
-1

|1
E

1
5

|0

?
i

 S
W

m

+

+

+p1 p2

p3 p4

p5 p6

p7

p
8

i1

i2

o
1

o
2

MYDLL

ParamsA=8,3,1,2,2,2,1,

ModelData=release/fdll,
10 0 1e-06 1 1
3e-03

+
RLCDLL_2

ParamsA=2,0,0,0,0,0,1,

ModelData=release/fdll,
10 20e-03 0 0 0

+

Rdum

100M

+ RLC

10,0,1uF

RLC_1

+ RLC

10,20mH,0

?v
RLC_2

Figure 10 Test case dll1.ecf

Piecewise linear segments are used in the programming of the nonlinear device function. The array of voltage
points (all real values) is:

 v -1 0 10 15=

EMTP-EMTPWorks, 5/24/2020 3:33:00 PM Page 24 of 24

The array of current points (all real values) is:

 i -10 0 1 5=

There is a total of 3 segments. The segments must be defined starting with the smallest voltage value and
moving to the largest voltage value. EMTP normally accepts only monotonically increasing characteristics, but
other types can be defined with some sophistication in the solution programming progress. At every solution
time-point it is required to define the operating segment. This segment is found by comparing the time-point
voltage solution to the segment starting voltage points. In this case the points are: -1, 0 and 10.
Each segment is given its line equation. In this case there are 3 equations since 3 segments:

1. i 10v 0 v=   −

2. i 0.1v 10 v 0=  

3. i 0.8v 7 v 10= −   

The remaining work is to provide the correct operating segment to EMTP at each simulation time-point. Each

segment is a Norton equivalent contributing to nY and to ni in equation (1).

In the steady-state computations, the DLL developer may disconnect the nonlinear function completely or use
it on its linear segment crossing zero. In this case it was chosen to initialize with segment 2. The actual

simulation results are shown in Figure 11. Since segment 2 has an admittance of 0.1 and the current source

has an amplitude of 20 A, the initial voltage value becomes 200. It is then moved back onto the correct
characteristic segment at the first simulation time-point.

0 20 40 60 80 100 120 140 160 180 200

-20

-15

-10

-5

0

5

10

15

20

Voltage (V)

C
u

rr
e

n
t
(A

)

Nonlinear function, simulation

Figure 11 Nonlinear function simulation

A dummy statistical switch named DummyTest can be included to test the correct programming for the
statistical requests DLL_SAVE_ME and DLL_LOAD_ME. The trick is based on requesting two statistical
simulations (Statistical device) and saving both waveforms. Since these waveforms are not affected by the
DummyTest switch position, they should be identical. If they are not identical or an error message occurs, then
the saving and loading of some time-dependent variables in the DLL are missing or incorrectly positioned.

	DLL programming in EMTP
	1 Introduction
	2 Standard path names
	3 Interfacing method
	3.1 Network equations
	3.1.1 Main system of equations
	3.1.2 Example
	3.1.2.1 Steady-state

	4 The request and participation setup
	4.1 The sequences of Core requests
	4.2 Data Input Requests
	4.3 Frequency scan requests
	4.4 Steady-state requests
	4.5 Time-domain requests

	5 DLL structure
	5.1 Main structure
	5.2 Building rules
	5.3 DLL function definitions
	5.3.1 Compiling and linking
	5.3.2 Debugging

	5.4 DLL Locations

	6 Example 1
	6.1 Model
	6.2 Folder contents
	6.3 Debugging
	6.4 Masking for DLL data specification

	7 Example 2

